

Exame de Ingresso ao PPGEM – 12 de Junho de 2017

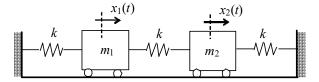
Nome do Candidato:	
RG/Passaporte:	
Assinatura:	
Indique, em ordem de preferência, as áreas de pesquisa de seu interess	se (Controle & Automação, Energia
& Fluidos ou Projeto & Fabricação).	
1 ^a :	
2ª:	
3 ^a :	
<u>Instruções</u>	
1) O exame consta de 20 questões, sendo que o candidato deve o resolver. Caso o candidato resolva um número maior de questo consideradas.	
2) Todas as questões têm o mesmo valor (1,0 ponto para cada questão n	resolvida)
 As questões devem ser respondidas apenas no espaço reservado a el página se necessário. 	as, podendo ser utilizado o verso da
4) Não é permitida a consulta a livros ou apontamentos.	
5) É permitido o uso de calculadoras eletrônicas <i>não programáveis</i> . N de calculadora de celulares, smartphones, tablets e assemelhados.	ão é permitido o uso de aplicativos
6) Todas as folhas devem ser identificadas com o nome completo do c	candidato.
7) A duração da prova é de 180 minutos (3 horas).	
Para uso dos Examinadores:	Nota:

Questões				
Q01	Q06	Q11	Q16	
Q02	Q0 7	Q12	Q17	
Q03	Q08	Q13	Q18	
Q04	Q09	Q14	Q19	
Q05	Q10	Q15	Q20	

PPGEM – Exame de Ingresso – Junho/2017

1ª Questão: (Álgebra Linear)

Determinar os autovalores e os autovetores ortonormais da matriz:


$$A = \begin{bmatrix} 1 & \sqrt{2} & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

PPGEM - Exame de Ingresso - Junho/2017

Nome do candidato:

2ª Questão: (Álgebra Linear)

O sistema massa-mola apresentado abaixo ilustra um problema físico que pode ser reduzido a um problema de autovalores.

Após utilizar hipóteses que simplificam a análise, têm-se as seguintes equações obtidas a partir da segunda lei de Newton:

$$\begin{cases} m_1 \frac{d^2 x_1}{dt^2} - k(-2x_1 + x_2) = 0\\ m_2 \frac{d^2 x_2}{dt^2} - k(x_1 - 2x_2) = 0 \end{cases},$$

onde x_1 e x_2 são as posições das massas m_1 e m_2 , em relação às suas respectivas posições de equilíbrio, e k é a constante de mola para todas as molas.

Da teoria da vibração, é conhecido que algumas das soluções do sistema de equações acima têm a forma: $x_1 = A_1 \operatorname{sen}(\omega t)$ e $x_2 = A_2 \operatorname{sen}(\omega t)$, onde A_1 e A_2 são as amplitudes da vibração das massas 1 e 2, respectivamente, e ω é a frequência angular de vibração.

Considere as informações acima para:

- (a) Reduzir o sistema de equações a um problema de autovalor;
- (b) Calcular os autovalores para o caso em que $m_1=m_2=10$ kg e k=50N/m.

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:	

3ª Questão: (Cálculo Diferencial e Integral)

Encontre uma solução y(x) para a equação:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y2}{x}$$

tal que y(1) = 1

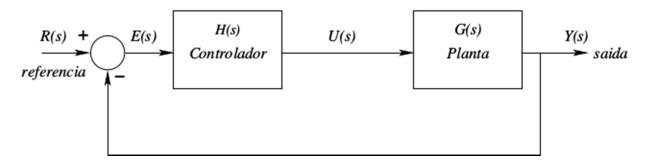
PPGEM – Exame de Ingresso – Junho/2017

ome do candidato:
^a Questão: (Cálculo Diferencial e Integral)
alcule a derivada:
$\frac{d(\ln(\ln(x)))}{dx}$

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

5ª Questão: (Controle)


Um sistema de controle em malha fechada onde é utilizado um motor CC é dado por:

$$H(s) = K$$
,

e

$$G(s) = \frac{1}{s(\tau_1 s + 1)(\tau_2 s + 1)}$$

 $G(s) = \frac{1}{s(\tau_1 s + 1)(\tau_2 s + 1)}$ onde $\tau_1 = 0.1seg$ é a constante elétrica do motor CC e $\tau_2 = 0.2seg$ é a constante mecânica do motor CC. Calcule os valores possíveis para o ganho K do controlador de tal forma que o erro estático $e_{ss} < 0.1mm$ para uma entrada do tipo rampa r(t) = At (onde A = 1 mm/seg), enquanto a estabilidade é mantida.

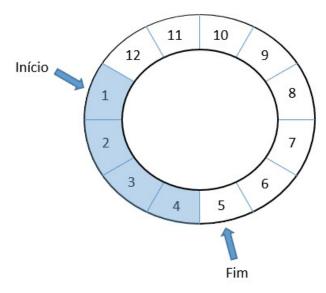
PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

6ª Questão: (Controle)

Seja o seguinte sistema de controle em malha fechada, onde:

$$G(s) = K \frac{(s^2 - 4s + 20)}{(s+2)(s+4)}$$


$$R(s) \xrightarrow{E(s)} G(s)$$

Determine o valor de K que torna o sistema marginalmente estável

PPGEM – Exame de Ingresso – Junho/2017

7ª Questão: (Computação)

Considere a fila circular da figura abaixo. Neste exemplo as posições 1, 2, 3 e 4 contém elementos que foram enfileirados e as demais posições da fila estão livres. O ponteiro "início" indica o próximo elemento a ser removido da fila. O ponteiro "fim" aponta para a próxima posição livre da fila.

Descreva como seriam as rotinas para:

- a) inserir elementos na fila. Exemplifique adicionando um elemento à posição 5.
- b) remover elementos da fila. Exemplifique removendo um elemento da posição 1.
- c) garantir que não haja perda de elementos

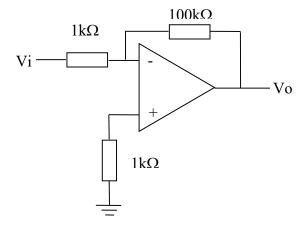
Considerando-se que a fila circular da figura é uma estrutura estática (alocação estática de memória), no que difere trabalhar com uma estrutura dinâmica?

PPGEM – Exame de Ingresso – Junho/2017

Nome do ca	andidato:		
Nome do ca	andidato:		

8ª Questão: (Computação)

- a) Explique o funcionamento deste código
- b) Qual o resultado "impresso" (gerado no terminal) por este código.

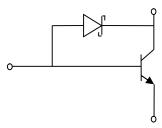

Utilize o verso da página se necessário.

PPGEM – Exame de Ingresso – Junho/2017

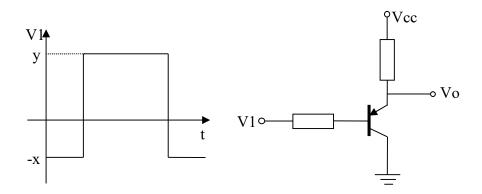
Nome do candidato:

9ª Questão: (Eletrônica)

Calcule a tensão total de offset do circuito a seguir, considerando I_{I0} =100nA e V_{IO} =5mV.


PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:


10ª Questão: (Eletrônica)

Analise a operação dos circuitos a seguir.

a) Diodos Schottky são diodos que apresentam comutação muito rápida e queda de tensão no sentido direto muito baixa. Explique qual a função do diodo Schottky no circuito a seguir.

b) Esboce a tensão de saída quando a tensão mostrada na figura da esquerda é aplicada no circuito. Explique como você obteve a saída.

PPGEM – Exame de Ingresso – Junho/2017

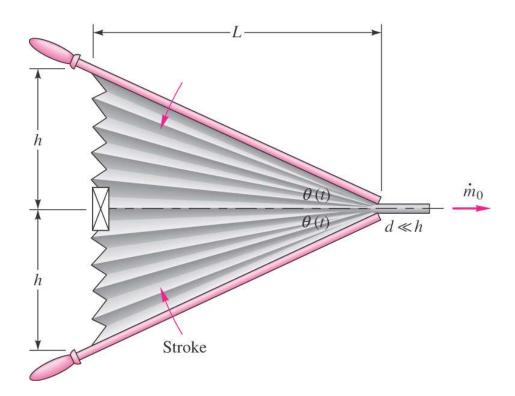
Nome do candidato:
443 Our of For (Materiais)
<u>11ª Questão:</u> (Materiais)
Explique a diferença de temperabilidade de um aço ABNT 1020 e ABNT 1070 usando como
base o ensaio Jominy.

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:
12ª Questão: (Materiais)
O que é uma transformação eutética? Dê exemplos de liga em que ela ocorre

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

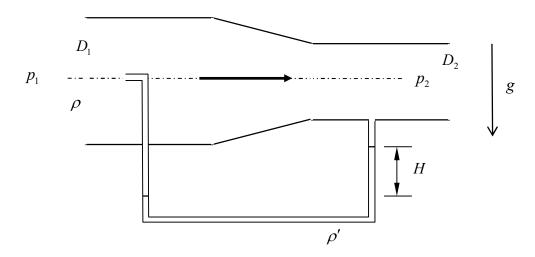

13ª Questão: (Mecânica dos Fluidos)

Um fole pode ser modelado como um volume em forma de cunha, como na figura. A válvula de retenção do lado esquerdo (pregueado) fica fechada durante o sopro. Se b é a largura do fole, normal ao papel, e L é o comprimento do fole:

- a) Definir um volume de controle para aplicar a conservação da massa.
- b) Supondo escoamento incompressível, que a superfície do fole forma aproximadamente um arco de circunferência no movimento e que a largura do jato de saída é muito pequena, deduzir uma expressão para a vazão volumétrica Q(t) na saída, em função da velocidade angular $\frac{d\theta}{dt}$ durante o sopro.

Lei de conservação da massa em forma integral:

$$0 = \int_{\nu} \frac{\partial \rho}{\partial t} d\nu + \int_{A} \rho \left(V \cdot \mathbf{n} \right) dA \quad \text{ou} \quad 0 = \frac{d}{dt} \int_{\nu} \rho d\nu + \int_{A} \rho \left(V_{r} \cdot \mathbf{n} \right) dA$$



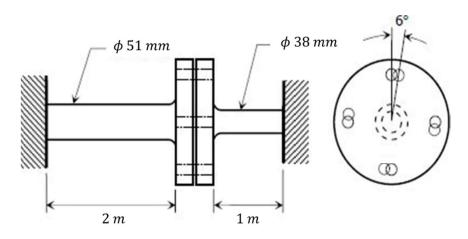
PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

14ª Questão: (Mecânica dos Fluidos)

No dispositivo com a contração (de diâmetro D_1 a diâmetro D_2) e o tubo Pitot da figura, o fluido escoante tem massa específica ρ , enquanto o fluido no tubo em U tem massa específica $\rho' > \rho$. Se a pressão estática a montante do Pitot é p_1 e a altura lida é H, calcular analíticamente a pressão estática p_2 e a vazão volumétrica Q. Considerar perfis de velocidade uniformes e desprezar as perdas por atrito.

Bernoulli: $p + \frac{1}{2}\rho V^2 + \rho g z = cte$


Lei de Stevin: $p + \rho g z = cte$

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

15ª Questão: (Mecânica dos Sólidos)

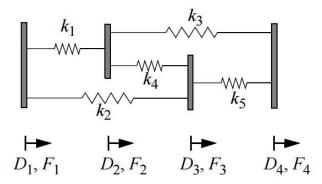
Os dois eixos de aço mostrados na figura abaixo, cada tem uma extremidade embutida em um suporte rígido e flanges rigidamente ligadas às suas extremidades livres. Os eixos devem ser aparafusados em suas flanges. No entanto, inicialmente há uma falta de correspondência de 6 $^{\circ}$ na localização dos orifícios do parafuso, conforme mostrado na figura. Determine a tensão de cisalhamento máxima em cada eixo depois que os eixos são aparafusados. Use G = 82700 MPa para ambos os eixos e desconsidere as deformações dos parafusos e flanges.

$$J = \frac{\pi}{32}D^4$$

$$\tau_{max} = \frac{16T}{\pi D^3}$$

$$\int_{D} J = \frac{\pi}{32}(D^4 - d^4)$$

$$\tau_{max} = \frac{16TD}{\pi(D^4 - d^4)}$$


$$\theta = rac{TL}{JG}$$
 em radianos

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

16ª Questão: (Mecânica dos Sólidos)

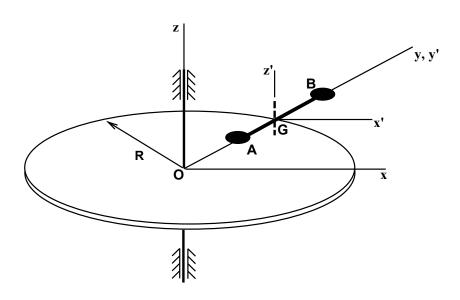
Um sistema de cinco molas está conectado como mostrado na figura abaixo. Todas as constantes de mola k_i são iguais a k. Além disso, $D_1 = D_4 = 0$, $F_3 = 0$ e $F_2 = P$. Determine os deslocamentos e as forças de reação.

D: deslocamento; F: força

PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

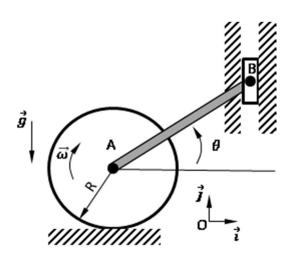
17ª Questão: (Mecânica Geral)


A figura abaixo representa o modelo de um brinquedo de parque de diversões em que um disco de massa \underline{M} e raio \underline{R} gira em torno de um eixo que passa pelo seu centro \mathbf{O} . Em um ponto distante \underline{R} de \mathbf{O} há uma barra contínua de massa desprezível que é articulada através de um pino vertical (tracejado) que permite seu giro livre em torno de \mathbf{G} . A barra possui acopladas massas concentradas \underline{m} (idênticas) às suas extremidades \mathbf{A} e \mathbf{B} (estas massas concentradas representam os habitáculos onde as pessoas são transportadas) e possui comprimento total 2L.

Considere o conjunto inicialmente em repouso com a barra AB na posição mostrada na figura. Aplica-se um torque externo $T\vec{k}$ ao disco de centro O fazendo com que comece a girar. Nestas condições, pedem-se:

- a) as acelerações angulares do disco de centro **O** e da barra **AB** se a barra for mantida travada na posição indicada na figura (isto é, sem permitir que a barra gire em torno do pino por **G**);
- b) as acelerações angulares do disco de centro **O** e da barra **AB** quando o dispositivo que trava o movimento da barra **AB** em torno de G for retirado.

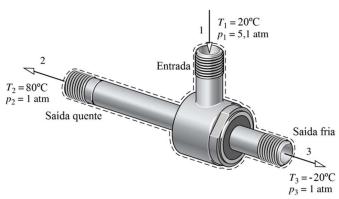
Observação: todo o movimento do sistema se dá no plano Oxy. Para efeito de equacionamento e cálculo, assuma que o sistema de coordenadas Oxyz (versores $\vec{i}, \vec{j}, \vec{k}$) seja solidário ao disco de centro O.


Dados: Joz=MR²/2, AG=BG=L

PPGEM – Exame de Ingresso – Junho/2017

18ª Questão: (Mecânica Geral)

O disco de centro A e raio R rola sem escorregar com vetor rotação $\vec{\omega}$ de módulo constante ω sobre uma superfície plana. A barra AB é articulada em ambas as extremidades, possui comprimento ℓ e conduz um bloco B cujo movimento é confinado a uma guia vertical. Com base nas informações acima, pedem-se os vetores velocidade dos pontos A e B e o vetor aceleração angular $\vec{\theta}$ a barra AB em função de θ e dos demais dados do problema. Utilizar o sistema de referência mostrado na figura para descrever os vetores.



PPGEM – Exame de Ingresso – Junho/2017

Nome do candidato:

19^a Questão: (Termodinâmica)

Um inventor afirma ter desenvolvido um dispositivo, mostrado na figura, que permite a produção de ar quente e frio a partir de um escoamento único de ar numa temperatura intermediária, sem a necessidade de calor ou trabalho. O inventor forneceu os dados em permanente que constam esquema, sendo que a vazão de ar frio é igual a 60% da massa que entra no dispositivo. Avalie a afirmação do inventor, admitindo que o ar é gás perfeito.

•		••	
250	250.05	178.28	1.51917
260	260.09	185.45	1.55848
270	270.11	192.60	1.59634
280	280.13	199.75	1.63279
285	285.14	203.33	1.65055
290	290.16	206.91	1.66802
295	295.17	210.49	1.68515
300	300.19	214.07	1.70203
305	305.22	217.67	1.71865
310	310.24	221.25	1.73498
315	315.27	224.85	1.75106
320	320.29	228.42	1.76690
325	325.31	232.02	1.78249
330	330.34	235.61	1.79783
340	340.42	242.82	1.82790
350	350.49	250.02	1.85708
360	360.58	257.24	1.88543
370	370.67	264.46	1.91313
380	380.77	271.69	1.94001
390	390.88	278.93	1.96633

PPGEM – Exame de Ingresso – Junho/2017

20ª Questão: (Termodinâmica)

Um sistema contém inicialmente 5 kg de ar a $p_1 = 10$ bar e $T_1 = 800$ K. O sistema é submetido a um ciclo motor composto pelos seguintes processos:

- Processo 1-2: expansão isotérmica até $V_2 = 2V_1$;
- Processo 2-3: compressão a pressão constante;
- Processo 3-1: aquecimento a volume constante.

Admitindo modelo de gás ideal, calores específicos constantes e desprezando os efeitos das energias cinética e potencial:

- (a) esboce o ciclo em um diagrama P-V,
- (b) calcule o trabalho realizado pelo sistema em cada processo,
- (c) calcule o calor trocado em cada processo;
- (d) determine o rendimento térmico do ciclo.

Dados:
$$R_{ar} = 0.287 \text{ kJ/kg.K}$$
, $c_{p,ar} = 1.004 \text{ kJ/kg.K}$, $c_{v,ar} = 0.717 \text{ kJ/kg.K}$.

gases ideais:
$$\frac{pV}{T} = cte$$
 $\Delta h = c_p \Delta T$ $\Delta u = c_v \Delta T$